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- During the last decade, a number of progresses have been made on Brockett’s problem of classifica-
tion of finite-dimensional estimation algebras for nonlinear filtering systems. In the following, we review

these progresses and expose some key points behind them.
1 Brockett’s problem of classification

Consider the following signal observation model :

dx(t) = f(x(t))dt + g(x(2))dv(e), x(0) = x,

(1)

N dy(t) = h(x(2))dt + dw(t), y(0) = 0,

in which x,v,y, and w are R"-, R"-, R™-,and R™- valued processes respectively, and v and w are
independent , standard Brownian processes. Suppose that the vector functions f and & are C* smooth and
g(x) is an orthogonal matrix for each x € R". x(¢t) is called the state of the system at time ¢ and
y(t), the observation at time ¢. p(t,x), the conditional probability density of the state x(¢), condi-
tioned on the observation | y(s): 0ss<t }, is determined by the Duncan-Mortensen-Zakai equation,

which in the unnormalized form is given by

do(t,x) = Lop(e,2)de + 25 Lo(t,%)dy;(¢), p(0,x) = po(x), (2)
i=1
. where
LI S AN S AN T R o B
Lo = 2 &< 9x%_2fiaxi_ o iCLIN ZZ;hi’ (3)

i=1 i=1 i

and for t=1,*+, m, L;is the function operator of multiplication by k;, and o, the probability density

* Project supported by the National Natural Science Foundation of China (Grant No. 79790130) .



242 PROGRESS IN NATURAL SCIENCE Vol. 10

of the initial state x,. Here and/or here-in-after, the following notations are used.
(i) Z is the totality of all the polynomials of degree less than or equal to i.

(ii) F, is the totality of all the homogeneous polynomials of degree-two. We use the convention
that 0€ %,. Whenever necessary, %%, (%, ***, x,) is used to specify the dependent variables of
F, . The default dependent variables are x,,"**, x,.

(iii) If a is a vector, the notation @; stands for the i-th component of a .

Define
D=5 4)
and
q=2;’f+2f2+2h2 (s)
Then

1
Ly = (2203 -79). (6)
Definition 1.  The estimation algebra & of the filtering system (1) is defined to be the Lie al-
gebra generated by {1y, L+, L.

Ocone!!’ observed the following basic property for an estimation algebra & to be finite-dimension-

al.

Theorem 1.  Let & be a finite-dimensional estimation algebra . If ¢ is a function in &, then ¢
is a polynomial of degree less than or equal to two, i.e. @< 3.

Finite-dimensional estimation algebras can be used to construct finite-dimensional nonlinear fil-
ters, which was initially proposed by Brockett and Clark'?!, Brockett!®!, and Mitter!*) . In his talk at
the International Congress of Mathematicians in 1983, Brockett'"’ proposed to classify all finite-di-
mensional estimation algebras. Since then, a number of progresses have been made on Brockett’ s
problem of classification. In the following, we shall restrict ourselves to classifying estimation algebras

of maximal rank.
Chiou and Yau'®! introduced the condition of maximal rank .

Definition 2.  An estimation algebra & is said to be of maximal rank if for every l<i<n

there exists a constant c; such that x; + ¢; € &.

Let & be the real vector space spanned by 1, %,, **-, x,, Dy, =, D, and L;. The following
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lemma is an immediate consequence of the maximal rank assumption.

Lemma 1.  Let & be an estimation algebra of maximal rank associated with the filtering system
(1). Then &5 &,.

H &is of maximal rank, Lemma 1 immediately gives that

af. af.
gB[DJ-,Di]=£Li—a—j:;=:wij,lsi,jsn. (7)

If further & is finite-dimensional, then Theorem 1 implies that wije Alorigi,jsn.
2 Preliminaries

Wongm introduced the following concept of (2-matrix:

Wy Wiy T Wi,
Wy Wxp T Wi,

. = = (a)u) (8)
Wp1 Whpa Wyp

Note that f;, as a tensor field, is the differential 1-form i fidx; and w;, as a tensor field, is the
i=1

12
differential 2-form > w; dx; A dx;. The exterior derivative of the former is just the latter, i.e.
I<i<jgn

they have the following relation

d( Z"]fidx,.) = D) wydx; A dx;. (9)

Igi<jgn

On one hand, since d* =0, we deduce that w; s satisfy the cyclic relation:

dw,
dx,

Jdw, Jdw,
S Y g,

7%, 72, < i), < n. (10)

On the other hand, the Poincaré’s Lemma means that every d-closed differential form in R" is d-ex-
act. Then, w;=0for 1 <i, j< n means that f; is d-closed and thus is d-exact, i.e. f; is a gradient
vector field. The following Theorem 2 of Yau!®! is a natural extension of the last assertion.

Theorem 2.  Suppose that (2 is a constant mairix. Then the drift term f must be a linear vector
field (i.e. each component is a polynomial of degree one) plus a gradient vector field .

The next two theorems were proved by Yau'® and will be used in the classification of finite-di-

mensional estimation algebras of maximal rank for nonlinear filtering systems.

Theorem 3.  Let F(x,,"**, x,) be a polynomial on R". Suppose that there exists a polyno-
mial path ¢ : R—>R" such that lim| c(t)l = o .and limF(c(t)) = — . Then there are no C*

o —
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Junctions f1, ***, f, on K" satisfying the equation
n aﬁ n
i=15;i+§f2i=l7. (11)

Theorem 4.  Suppose that the estimation algebra & of (1) is both of finite dimension and of
maximal rank and that (2 is a constant matrix. Then, h, €A for Isi<sm, €%, and &= &,.

Proof. Since & is of maximal rank, D,€ &by Lemma 1. Then,

‘ . 19
&5 [Ly, D] = > w;D; + — L.
0 ; g 2 Iu,

While wij’ s are constants, we obtain

In view of Theorem 1,

and thus 7€ 3. According to the eq. (5),

DY Y R 3% (12)

i=1 =1
which immediately implies the desired results by Theorem 3. Q.E.D.

If 2 is a constant matrix, then Theorems 2 and 4 immediately imply the three assertions of the
classification theorem (see Theorem 6 in section 3 below) , respectively. The proof of the classifica-

tion theorem is reduced to show that 2 is a constant matrix.

Recall that %, is the space of quadratic forms in n variables, i.e. the real vector space

spanned by xx;, with 1<i<j<n. Let X=(xy, =y x,) .

Definition 3.  For any quadratic form p € J,, there exists a symmetric n X n matrix A such
that p(x) = X'AX. The rank of the quadratic form p denoted by r(p) is defined to be the rank of the

matrix A .

Definition 4. A fundamental quadratic form of the estimation algebra & is an element py& &
N H#, with the biggest positive rank , i.e. r(py)=r(p) for any p € &N . The quadratic rank
of the estimation algebra & is defined to be the rank of a fundamental quadratic form of &.

Let po be a fundamental quadratic form of £and k: = r(p,). After an orthogonal transformation

on x, pycan be written as
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k
= Dleats o #0. (13)
i=1

Chen and Yau'®! proved the following Theorem 5 .

Theorem 5. Let & be a finite-dimensional estimation algebra of maximal rank. Let k be the
quadratic rank of &, and po(defined by eq. (13)) a fundamental quadratic form of & Thenp € &
(\ #, implies that p depends only on the k variables x,, x5, ***, %, i.e. pE (%, =+, x,).

3 Recent advances
We begin with introducing the notation:

(1) ,8,] is the homogeneous polynomial of the degree-one part of w;; (1f it exists, if not it is zero) ,

that is, f3; is a linear combination of x;, ***, x, with no constant term.
(ii) A,(i, j) is the coefficient of x, in B;» and A, is the matrix in which the (i, j)-component
is A,(i,j). Thus

A(i,j) = aﬂ ZA(l,])x (14)

(iii) 7, is the homogeneous polynomial of the degree-4 part of 7 (where 7€ %) .
(iv) Decompose the £2-matrix into blocks in the manner of
Oy Qp

Q =
-0 QOp

with £,, € 7¥**, @, €1 ("=F and @, € RV X (-0
Write
2
a 74

zﬂ]ugll_% P C(j,l): = i)C,p(j,l)x,xp

J rop=1

Ec,,(; Da?+2 D) €3G, Dag, (15)

lgr<pgn

ZC"(] Da* +2 Z C,(j,Dax, € &N F(xy, x5, 5 x,)

lgsr<pgk

with
C,p(j,l) = CP,(j,l); C,p(j,l) =0ifr>korp > k. (16)

[10]

Tam, Wong and Yau'""" classified all finite dimensional exact estimation algebras of maximal

rank with arbitrary state-space dimension. Chiou and Yau!®! introduced the concept of maximal rank
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estimation algebras and classified all finite-dimensional estimation algebras of maximal rank with state-
space dimension less than or equal to two. The novelty of their theorem is that there is no assumption
on the drift term of the nonlinear filtering system, and the proof lied in proving that w, is a constant
(note that w,, =0 and wy, =0) . Later, Chen, Yau and Leung[m improved Chiou and Yau’s result
in that the dimension of the state-space was assumed to be less than or equal to three, and their proof

consisted of proving that the three entries w,, w3 and w,; are constants.

In 1996, Chen and Yau!®’ began to study the £2-matrix in a systematical way. They concluded
that w; & A for 1< i, j<n and further that £, is a constant matrix. Later, Chen and Yaul'?

proved that £2,, is a constant matrix.

By showing that £2,, is a constant matrix, Chen, Yau and Leung!'! could classify all finite-di-
mensional estimation algebras of maximal rank when the state space dimension is less than or equal to

four. Their proof is sketched as follows. They first noticed that the relation [[ L, Dj] , D] €&

implies the following

S8 - e € 50 e, s ) an

and then for p,j,l=1, -, nand g=k+1,,n,

84
VR (18)

E[A,,(J,l)/lq(l,l) +A,(j,1)4,(1,1)] = EW

t=1

Further, the relation (18) implies

jbzy(l,i)AKi,l) = jizh(j,i)AAi,j>

1< . , .. , .
= EE(A}'(]’L)A[(1'91> + A, DAG D), j.l = k+ 1,0, (19)
and

1,-,n. (20)

DAGDAGD = 2 AG, DAL, = k+1,,n, 1
=1 v=1
From (19), Chen, Yau and Leung'"! derived
20 (AL + 20 (4G, = 22, 4G, DAL + 22, AL, DA, D),
i=1 i=1 i=1 i=1

(21)

and using the Schwarz inequality, they obtained

22 (41,00 + 23] (4], D))
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< 214G N + (A1) + (A4,(1,))% + (4,(,1))%). (22)

vl

By taking the sum of both sides of (22) over j < I, they got

D0 (AL < (n-4) >, (4G, i) (23)

PNy i) .

At this stage, by assuming that n <4, they derived from (23) that
Aj(l,i)=0 fori 2j, i1, j,l=Fk+1,",n, (24)
and then proved that {2,, is a constant matrix for n <4.

To get (24) from (23), it is essential to assume that n <4. The arguments of Chen, Yau and
Leung' ! strongly depend on the assumption that the state dimension n <4, and thus are difficult to

be generalized to the general case of arbitrary state dimension.

Recently, the author’ got around the above difficulty, and classified all finite-dimensional esti-
mation algebras of maximal rank with arbitrary state-space dimension. The author' proved the follow-

ing general classification theorem.

Theorem 6. Let & be a finite-dimensional estimation algebra of the filtering problem (1) of
maximal rank , and & the real vector space of dimension 2n + 2 with basis given by 1, %, ,%,,

D, ,D,and Ly. Then,

(i) the drift term f must be a linear vector field (i.e. each component is a polynomial of degree

less than or equal to one) plus a gradient vector field ;
(ii) 7 is a polynomial of degree less than or equal to two ;

Theorem 6 improves both results of Tam, Wong and Yau!") and Chen, Yau and Leungm] in
that Theorem 6 neither assumes that the finite-dimensional estimation algebra under consideration is

exact nor assumes that the state-space dimension is less than or equal to four.

Mitter once conjectured that all functions in finite-dimensional estimation algebra & are linear in
x . It is obvious that the second assertion of the classification theorem implies the Mitter conjecture for

the case of estimation algebras of maximal rank.
The key points of the author’s proof of Theorem 6 are the following two propositions:

Proposition 1. We have forj,l=k+1,, n,

1) Tang, S., Brockett’s problem of classification of finite-dimensional estimation algebras for nonlinear filtering systems, sub-
mitted to SIAM J. Control & Optim. Also in Abstracts of Short Communications and Poster Sessions , International Congress of Mathe-
maticians (Berlin, August 18—27, 1998), p. 352.
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DAL+ D2 (AG, N+ DAL - A4, i)
= 22 4G, DAL D). (25)
=1
Proposition 2. We have
Aj(j,i)=0f0rj: k+1, ~,nandi =1,",n. (26)

Propositions 1 and 2 immediately imply that {2,, is a constant matrix, and the proof of Theorem
6 is then finished.

Proposition 1 is easily seen from (19). To prove Proposition 2, the author introduced a series of

new computations about the estimation algebra &. Fig. 1 outlines the computation routine.
7 y v,

Dj _Li) [LO’Dj] i» [LO’I:L05Dj:]] i’ [Loy[LQ,[LO’Dj]]]

Io ls b

[U;, D] [v,,D,] (W,;,D;]
I» lo
(LV;,D;],D,] [[w,,D;],D,]
Is,
[[[w,,D;],D,1,D;]

Fig. 1. Computation chart

The last two columns of computations in the chart are completely new, and their last terms

tLVv,, D;1, D) and [[LW,, D;], D;], D;] turn out to have the same form: “a homogeneous poly-
nomial of degree-two” + “an element of & .

From these two terms, the author obtained the two homogeneous polynomials in & of degree-two:

DLAGL DBy + 4G ) BBy = AL i) BB

tor=l

= A D) Bl = BiAi(j5 1) B = BiBA(r, i) ]
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. Z")(a%(c(j,i))ﬂﬁ - Aj(j,i)C(l,i))G N H

r=1

and

- lfil[A,(j,i)ﬁi,ﬂ,, + A G r) BBy + AL BBy + AL DBBIA G, )
- 2}2 E%}_(Al(j,i)ﬁinza,-, + 4G BBy + AL D BBy + AG5 D BBy B,
+,.Z,"3.(9%(C(j’r))ﬁ” + a%(cu,l))ﬁ,-,)Aj(j,r)
+%25a£;aww@+£yaﬁmgh,
- zi.,,zn,zl[/"(j’i)“lf“”) s 4G 4G DIRE, + 41216,10”)[?,—1,8,-,
-32 ~[C<; )8, 14;(j,r) —32 [C(f )8, 1B;
- 32{2/1,(]',1')[ g)ﬁjb@,i + CGLD]+ 4G, D] gﬁ,,ﬂ,i + C(r,i)]
f Bagl Db+ €] 4GOI B+ €G] AU
_32 (2A G, l)[Zﬁ,thJ, cG,id)+ 44, L)[E,B,.,Bh+ cr,i)]
+ By [Zﬁm+arwhAurMZMm+coon

1

33 sl e 3 e mn

Suppose that j= k + 1. The coefficient of x? in the first polynomial is equal to
= 204G A G, DA, D - 444D,
tr=1

while in the second polynomial, the coefficient of xf is equal to

6 20 4G DAGDAG, A + 2445, )).
ilr=1

(27)

(28)

(29)

(30)
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These coefficients should be zero as j= &k + 1 by Theorem 5. In this way, the author established the

two sets of new equations about the {2-matrix:

SV 4G OAG,DAGLD = - AA4G,)) = 0,
(31)

j: E+1,, n, L =1,",n

and

) 1< . .. . . .
A5G = D AGDAGDAG DA, = k+1, -, n. (32)

D!

Putting (31) into (32), the author obtained
A‘]‘(]a]) = 0’ ] =k + 1"”’ n. (33)
Since the matrix A; is skew symmetric and AJZ- symmetric, the author further had
2¢ - . _
Al(jvl) =0’ J = k+1’ s NNy l = 17 s (34)

and thus Proposition 2 is proved.

There are many other striking works related with this paper, among which are Cohen de
Laral'® ]5], Davis and Marcus[w], Dong, Tam, Wong et al.[”], Duncan'’, Marcusm], and
Wong!'® %) The recent perspective paperl) provides a good review of the past and the present of the

filtering theory .
Acknowledgement The author would like to thank Professors Tyrone E. Duncan and Li Xunjing for their helpful discussions.
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